A globally and quadratically convergent primal-dual augmented Lagrangian algorithm for equality constrained optimization

نویسندگان

  • Paul Armand
  • Riadh Omheni
چکیده

A globally and quadratically convergent primal–dual augmented Lagrangian algorithm for equality constrained optimization Paul Armand & Riadh Omheni To cite this article: Paul Armand & Riadh Omheni (2015): A globally and quadratically convergent primal–dual augmented Lagrangian algorithm for equality constrained optimization, Optimization Methods and Software, DOI: 10.1080/10556788.2015.1025401 To link to this article: http://dx.doi.org/10.1080/10556788.2015.1025401

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Primal Superlinear Convergence Results for Some Newtonian Methods for Constrained Optimization

As is well known, Q-superlinear or Q-quadratic convergence of the primal-dual sequence generated by an optimization algorithm does not, in general, imply Q-superlinear convergence of the primal part. Primal convergence, however, is often of particular interest. For the sequential quadratic programming (SQP) algorithm, local primal-dual quadratic convergence can be established under the assumpti...

متن کامل

Decomposing Linearly Constrained Nonconvex Problems by a Proximal Primal Dual Approach: Algorithms, Convergence, and Applications

In this paper, we propose a new decomposition approach named the proximal primal dual algorithm (Prox-PDA) for smooth nonconvex linearly constrained optimization problems. The proposed approach is primal-dual based, where the primal step minimizes certain approximation of the augmented Lagrangian of the problem, and the dual step performs an approximate dual ascent. The approximation used in th...

متن کامل

Primal-dual interior point QP-free algorithm for nonlinear constrained optimization

In this paper, a class of nonlinear constrained optimization problems with both inequality and equality constraints is discussed. Based on a simple and effective penalty parameter and the idea of primal-dual interior point methods, a QP-free algorithm for solving the discussed problems is presented. At each iteration, the algorithm needs to solve two or three reduced systems of linear equations...

متن کامل

Computational Complexity of Inexact Gradient Augmented Lagrangian Methods: Application to Constrained MPC

We study the computational complexity certification of inexact gradient augmented Lagrangian methods for solving convex optimization problems with complicated constraints. We solve the augmented Lagrangian dual problem that arises from the relaxation of complicating constraints with gradient and fast gradient methods based on inexact first order information. Moreover, since the exact solution o...

متن کامل

On the local quadratic convergence of the primal-dual augmented Lagrangian method

We consider a Primal-Dual Augmented Lagrangian (PDAL) method for optimization problems with equality constraints. Each step of the PDAL requires solving the Primal-Dual linear system of equations. We show that under the standard second-order optimality condition the PDAL method generates a sequence, which locally converges to the primal-dual solution with quadratic rate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2017